Skein-theoretical derivation of some formulas of Habiro

نویسنده

  • Gregor Masbaum
چکیده

Abstract We use skein theory to compute the coefficients of certain power series considered by Habiro in his theory of sl2 invariants of integral homology 3-spheres. Habiro originally derived these formulas using the quantum group Uqsl2 . As an application, we give a formula for the colored Jones polynomial of twist knots, generalizing formulas of Habiro and Le for the trefoil and the figure eight knot.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skein Construction of Idempotents in Birman-murakami-wenzl Algebras

We give skein theoretic formulas for minimal idempotents in the Birman-Murakami-Wenzl algebras. These formulas are then applied to derive various known results needed in the construction of quantum invariants and modular categories. In particular, an elementary proof of the Wenzl formula for quantum dimensions is given. This proof does not use the representation theory of quantum groups and the...

متن کامل

Matrix Formulae and Skein Relations for Cluster Algebras from Surfaces

This paper concerns cluster algebras with principal coefficients A•(S,M) associated to bordered surfaces (S,M), and is a companion to a concurrent work of the authors with Schiffler [MSW2]. Given any (generalized) arc or loop in the surface – with or without self-intersections – we associate an element of (the fraction field of) A•(S,M), using products of elements of PSL2(R). We give a direct p...

متن کامل

Temperature correction of blood-gas and pH measurements.

We critically review formulas for temperature correction of pH, pCO2, and pO2 measurements in whole blood and the clinical usefulness of these formulas. We discuss both the theoretical derivation and experimental verification of temperature-induced changes. We recommend when to use and when not to use these formulas, based upon the clinical interpretation of these assays.

متن کامل

Jordan derivation on trivial extension

Let A be a unital R-algebra and M be a unital A-bimodule. It is shown that every Jordan derivation of the trivial extension of A by M, under some conditions, is the sum of a derivation and an antiderivation.

متن کامل

On Constructions of Generalized Skein Modules

Jozef Przytycki introduced skein modules of 3-manifolds and skein deformation initiating algebraic topology based on knots. We discuss the generalized skein modules of Walker, defined by fields and local relations. Some results by Przytycki are proven in a more general setting of fields defined by decorated cell-complexes in manifolds. A construction of skein theory from embedded TQFT-functors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003